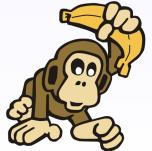
Introducing the **Banana Bound**and Beyond-Birthday-Barrier Security of the JH Mode

Dustin Moody[†], Souradyuti Paul^{†‡}, Daniel Smith-Tone[†]

[†]National Institute of Standards and Technology, US [‡]KULeuven, Belgium

FSE 2012 Rump Session

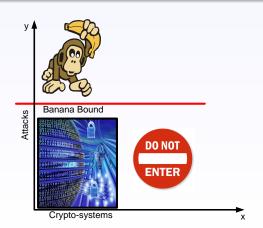
Presented by Souradyuti Paul


Banana Cryptography (I)

Not very well developed...

Banana Attacks

- Introduced by Aumasson in 2010 to capture the practise of presenting trivial crypto-attacks under the pretext that they are significant. Another name: pseudo-attacks.
- It is a powerful concept.



Banana Cryptography (II)

We extend the notion

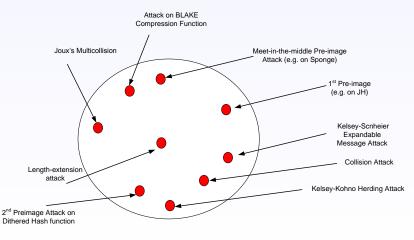
Definition (Banana Bound)

The security bound below which no banana attack is possible.

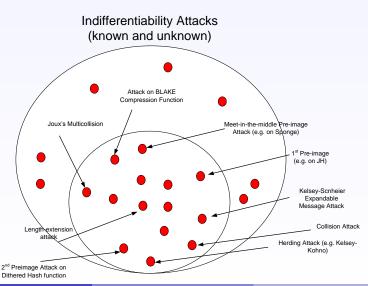
Skepticism on Indifferentiability Framework

- Indifferentiability Attacks are Banana Attacks
- Indifferentiability Security Bounds are Banana Bounds

Some Retrospection

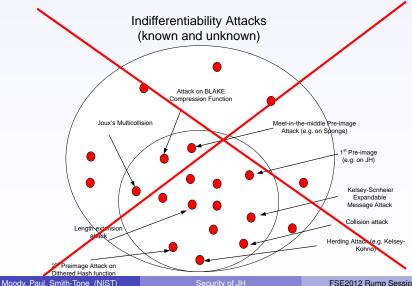

Influential Attacks that Changed Our Outlook on Hash function Security

- Joux's Multi-collision
- Kelsey-Schneier Expandable Message
- Kelsey-Kohno Herding Attack
- Length extension attack
- ...
- ...


All the above attacks assume that the underlying primitive is a random oracle.

Indifferentiability attacks are not from far-away galaxies (I)

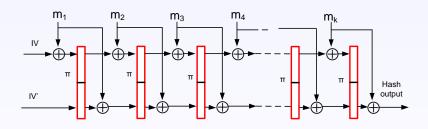
Some Indifferentiability Attacks



Indifferentiability attacks are not from far-away galaxies (II)

What does Indifferentiability Security Mean?

Resistance to all Indifferentiability Attacks.



Bounds for popular hash modes of operation

Mode of	Message	Primitive	Rate =	Primitive	Indiff.
operation	block-length	input-length	$\frac{b}{a-b}$	Output-length	bound
	per call (b)	per call (a)		per call	
MD	n	2 <i>n</i>	1	n	0
MDP	n	2 <i>n</i>	1	n	n/2*
EMD	n	2 <i>n</i>	1	n	n/2*
JH	n	2 <i>n</i>	1	2 <i>n</i>	n/3
Sponge	n	2 <i>n</i>	1	2 <i>n</i>	n/2*
Grøstl	n	2 <i>n</i>	1	2 <i>n</i>	n/2
Parazoa	n	2 <i>n</i>	1	2 <i>n</i>	up to <i>n</i> /2
FWP	n	2 <i>n</i>	1	2 <i>n</i>	2n/3
HAIFA	n	3 <i>n</i>	1/2	n	n/2*
Skein	n	3 <i>n</i>	1/2	n	n/2*
WP,chopMD	n	3 <i>n</i>	1/2	2n	<i>n</i> − log <i>n</i> **
Shabal	n	4 <i>n</i>	1/3	2n	n*
BLAKE	2 <i>n</i>	4 <i>n</i>	1	2 <i>n</i>	n/2*

- For each case the hash-output is *n*-bit.
- The symbols * and ** denote optimal and close to optimal.

The JH mode

- $\bullet \ M \stackrel{pad}{\to} m_1 m_2 m_3 \cdots m_k$
- \bullet π is a permutation
- All wires are n bits
- Variants: Chop *n* output bits to hash-size *h*
- Value n = 512, h = 512, 384, 256 and 224 bits

Results on the JH mode of operation • Previous Results.

Mode of	Message	Primitive	1st	2nd	Collision	Indiff.
operation	block-length	input-length	preimage	preimage	bound	bound
	per call	per call	resistance	resistance		
JH-n	n	2n	n/2	n/2	n/2*	n/3
JH-512	512	1024	256	256	256*	170
JH-256	512	1024	256*	256*	128*	170

• Results to be presented at the SHA3 Conference.

Mode of	Message	Primitive	1st	2nd	Collision	Indiff.
operation	block-length	input-length	preimage	preimage	bound	bound
	per call	per call	resistance	resistance		
JH-n	n	2n	n/2	n/2	n/2*	n/2
JH-512	512	1024	256	256	256*	256
JH-256	512	1024	256	256*	128*	256*

• New results for the rump session .

Mode of	Message	Primitive	1st	2nd	Collision	Indiff.
operation	block-length	input-length	preimage	preimage	bound	bound
	per call	per call	resistance	resistance		
			0 /0	- /-		
JH-n	n	2n	2 <i>n</i> /3	2 <i>n</i> /3	n/2*	2n/3
JH- <i>n</i> JH-512	512	1024	2n/3 342	2n/3 342	n/2* 256*	2n/3 342

Attack Technique

- Almost the same set of Bad events as in FWP: Two-phase framework.
- Additional Bad events for reverse queries.