On the Collision and Preimage Security of MDC-4 in the Ideal Cipher Model

Bart Mennink, KU Leuven

FSE 2012 Rump Session, Washington, DC March 20, 2012

MDC-4

 (E_1, E_2) vs. E $f_{\mathrm{MDC-2}}$ vs. $f_{\mathrm{MDC-4}}$

MDC-4 Based on Two Block Ciphers E_1 , E_2

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	2 ⁿ /n [KMRT09]	2"	2" [KMRT09]	(E_1,E_2)
MDC-4	2 ^{n/2}	2"	2 ⁿ	2 ^{7n/4} [KP97]	(E_1,E_2)

MDC-4 Based on Two Block Ciphers E_1 , E_2

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	2 ⁿ /n [KMRT09]	2 ⁿ	2 ⁿ [KMRT09]	(E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	2 ⁿ	2 ^{7n/4} [KP97]	(E_1, E_2)

Collision Resistance

- We achieve a (better) $2^{5n/8}$ security bound
- Steinberger's proof inapplicable, proof from scratch independent analysis by Fleischmann et al.: 2^{3n/5} bound

MDC-4 Based on Two Block Ciphers E_1 , E_2

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	$2^n/n$ [KMRT09]	2 ⁿ	2 ⁿ [KMRT09]	(E_1,E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	$2^{5n/4}$	2 ^{7n/4} [KP97]	(E_1, E_2)

Collision Resistance

- We achieve a (better) $2^{5n/8}$ security bound
- Steinberger's proof inapplicable, proof from scratch independent analysis by Fleischmann et al.: 2^{3n/5} bound

Preimage Resistance

• 2^{5n/4} security bound (beyond birthday bound!)

MDC-4 Based on One Block Cipher E

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	2 ⁿ /n [KMRT09]	2"	2" [KMRT09]	E or (E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	$2^{5n/4}$	2 ^{7n/4} [KP97]	(E_1,E_2)
MDC-4	2 ^{n/2}	2"	2"	2 ^{7n/4} [KP97]	E

MDC-4 Based on One Block Cipher E

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	$2^n/n$ [KMRT09]	2 ⁿ	2 ⁿ [KMRT09]	E or (E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	$2^{5n/4}$	2 ^{7n/4} [KP97]	(E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	2"	2 ^{7n/4} [KP97]	E

Collision Resistance

• 2^{5n/8} security bound still applies

independent analysis by Fleischmann et al.: $2^{3n/5}$ bound

MDC-4 Based on One Block Cipher E

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	$2^{3n/5}$ [Ste07]	$2^n/n$ [KMRT09]	2 ⁿ	2 ⁿ [KMRT09]	E or (E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	$2^{5n/4}$	2 ^{7n/4} [KP97]	(E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	2"	2 ⁿ	Ε

Collision Resistance

• $2^{5n/8}$ security bound still applies

independent analysis by Fleischmann et al.: $2^{3n/5}$ bound

Preimage Resistance

- If Y = Z: preimage attack in 2^n queries!!
- Restricted to $Y \neq Z$: bound of $2^{5n/4}$ carries over

Conclusions

	collision		preimage		ideal
	security	attack	security	attack	primitives
MDC-2	2 ^{3n/5} [Ste07]	$2^n/n$ [KMRT09]	2 ⁿ	2" [KMRT09]	E or (E_1, E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	$2^{5n/4}$	2 ^{7n/4} [KP97]	(E_1,E_2)
MDC-4	2 ^{5n/8}	2 ⁿ	2"	2 ⁿ	Е

Thanks for your attention!