
A Trivial Attack on McOE-X

Florian Mendel, Vincent Rijmen, Elmar Tischhauser

The Construction

K

K K

KKK

H0 M1 ML

ML+1||τ [0 . . . n − l∗ − 1]

τ

τ

E

E E

EEE

C1 CL

CL+1||T [0 . . . n − l∗ − 1] T [n − l∗ . . . n − 1]||Z

τ
0n

T

Fig. 1. The McOE-AES/McOE-Threefish encryption process. If, after the last complete message block has been
encrypted, there is some incomplete block left, McOE performs tag-splitting (upper variant). Else, the tag can
be computed without splitting (lower variant). The key used for the block cipher E is computed by the injective
function K ⊕ V which is given the secret key K an the chaining value input V . The tag returned is the n-bit value
T . The n − l-bit value Z is discarded. The ciphertext in the tag-splitting case is (T, C1, . . . , CL, CL+1) and otherwise
(T, C1, . . . , CL). The decryption process works in a similar way from ’left to right’, only the block cipher component
Eϕ is replaced by its counterpart E−1

ϕ apart from one exception: the first call computing TM .

2 Practical On-Line Authenticated Encryption using AES and Threefish

We start with the fruits of our analysis by giving two concrete instances of OAE schemes including
performance data and reference source code2. One instance, McOE-AES uses AES-128 as the core
component while McOE-Threefish uses the block cipher Threefish-512, a cipher with 512-bit block
size and key size, which is the core working component inside the SHA-3 finalist Skein[30].

We also introduce the tag-splitting (TS) method for processing messages whose length is not a
multiple of the block length. Without TS, we would have to pad such messages and then encrypt
the padded messages – resulting in an expanded ciphertext. TS is similar to a well-known length
preserving method called ciphertext stealing (CTS), e.g. [9]. Note that CTS requires to process the
last block before the last-but-one, which is not possible for McOE.

Let EK be a block cipher taking a k-bit key K and a plaintext/ciphertext of size n-bit. Note
that for our chosen instances, AES-128 and Threefish-512, we have n = k. The pseudo code for
these two McOE instances is given in Table 3 – on the top without TS, on the bottom including
TS.

The algorithms without TS, EncryptAuthenticate and DecryptAuthenticate, are sim-
plified algorithms for messages that are aligned on n-bit boundaries, i.e. M = (M1, . . . , ML) ∈
({0, 1}n)L for some integer L. The TS-variants EncryptAuthenticateSplitTag and DecryptAu-
thenticateSplitTag, can handle arbitrarily sized messages, i.e., M = (M1, . . . , ML, ML+1) ∈
({0, 1}n)L||{0, 1}l∗ where L and l∗ are integers with 0 ≤ l∗ < n and ′||′ denotes the string concate-
nation operator. See Figure 1 and Table 3.

2 The reference source code is available on request; it will be published as open source.

4

Figure: Structure of McOE-X.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

The Attack

1 Choose an arbitrary value a.

2 For ` values k compute b = E(k ,a) and save the pair (b, k) in a

list L.

3 Choose an arbitrary x and set M1 = x and M2 = a such that

m = x‖a and ask for the ciphertext/tag pair (c,T) with

c = C1‖C2.

4 Check if C2 is in the list L to get K .

If C2 is in the list L then a candidate for the key is found. Compute

K = k ⊕ M1 ⊕ C1,

Else go back to step 3.

After repeating steps 3-4 about 2n/` times one expects to find the

correct key with complexity of about 2n/`+ `.

Discussion

Attack is applicable whenever known values are xored

(combined) with the key input

How to fix McOE-X?

Increase the keysize

Use a tweakable block cipher :-)

Thank you for your attention!

Discussion

Attack is applicable whenever known values are xored

(combined) with the key input

How to fix McOE-X?

Increase the keysize

Use a tweakable block cipher :-)

Thank you for your attention!

Discussion

Attack is applicable whenever known values are xored

(combined) with the key input

How to fix McOE-X?

Increase the keysize

Use a tweakable block cipher :-)

Thank you for your attention!

Discussion

Attack is applicable whenever known values are xored

(combined) with the key input

How to fix McOE-X?

Increase the keysize

Use a tweakable block cipher :-)

Thank you for your attention!

Discussion

Attack is applicable whenever known values are xored

(combined) with the key input

How to fix McOE-X?

Increase the keysize

Use a tweakable block cipher :-)

Thank you for your attention!

